IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

On a phase transition in a one-dimensional non-homogeneous model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32 875
(http://iopscience.iop.org/0305-4470/32/6/002)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.118
The article was downloaded on 02/06/2010 at 07:58

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. GerB2(1999) 875-884. Printed in the UK Pll: S0305-4470(99)97456-5

On a phase transition in a one-dimensional non-homogeneous
model

M Bundarut§ ad C P Giinfeld|

T Theoretical Physics Department, Institute of Physics and Nuclear Engineering, PO Box MG-6,
Bucharest-Magurele, RO-76900, Romania

¥ Institute of Space Sciences, INFLPR, Bucharest-Magurele, PO Box MG-36, RO-76900,
Romania

Received 8 September 1998

Abstract. We prove the existence of an infinite-order phase transition for a semi-infinite, one-
dimensional, non-homogeneous system of classical continuous spins, with long-range interactions
and generad priori distribution.

1. Introduction

In a recent paper [1], a phase transition of infinite order in temperature has been proved for
a non-homogeneous, one-dimensional Ising model, with long-range interactions. Numerical
simulations and analytical considerations [2, 3] suggest that the results of [1] might be valid
for more general models.
In this paper we extend the results of [1] to a one-dimensional system of (classical)
continuous spins, with generalpriori distribution of the spins.
More precisely, we consider a system of sping R,i =1, 2, ..., n, in the presence of
a constant, external magnetic fi¢ide R described by the Hamiltonian
n 1 j—1 n
Hypn(x1,x2,...,%,) = — Z - inxj — th,- Hip=—hx1. (1)
=3 im1
Obviously, the sequendé?, },—1 -, ... verifies the recurrence relation
Hn,h(-xlv e xn) = anl,h+x,,/n (xla e xnfl) - hxn n > 2. (2)

We assume that tha priori probability distributionp of the spins, in the absence of the
interactions, has compact supportand is an even ‘GHS measure’ (see e.g. [4]), i.e. its generating

function
F(x)=In (/e’”p(dt)) ?3)

has a strictly concave derivative on [&).
The partition function of the model, for the inverse temperafuie 0, is

2. = [ @B n)] [ o). (4)
R7 i=1
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Denoting
1
gn(hs ,3) =—In Zn(ha ,8) (5)
np
the free energy per spin isg, (k, B), while the magnetization per spings(%, 8).
In this paper we prove the existence of the thermodynamic limit-=lis g, (%, 8)—
and show that the corresponding thermodynamic magnetization per spin is the solution of a
certain differential equation. Moreover, the system exhibits a phase transiiqthiere exists
spontaneous magnetization).

The differential equation satisfied by the magnetization can be guessed, starting from the
recurrence of the partition functions resulting from (2),

Z,(h, B) = f M Z,_1(h+t/n, B)p(dt) n=?2 (6)
R
or

exp(Bgn(h)) = /eXP[ﬂht +(n — DB Gn-1(h +1/n) — gu(h))]p(dr) )

(for the sake of simplicity we have omitted the dependencg omthe notation ofg,,).

Indeed, assuming that, — g and(» — 1)(g, — g,—1) — O, with the sequence of
derivatives verifyingg), — g’, asn — oo, then the thermodynamic limit should satisfy the
equation

exp(Bg(h)) = / exp[Bht + Bg'(h)t] p(dr) 8)
or

Bg(h) = F[Bh + Bg'(h)] ©)
whereF is given by (3).

In terms of the magnetization per spin= g’, equation (9) becomes
m(h)

mh) = ——-———1 (20)
F'(Bm(h) + Bh)
Obviously the solutions of (9) and (10) are related by the following formula
h
g(h, B) = B F(Bm(0)) +/O m(t) dr. 11)

Further, from simple physical considerations, equation (10) should be supplemented with
the following condition

fim m(h) = M > 0 (12)

where [-M, M] is the smallest interval containing the compact suppopt.of
We can state our main results as follows.

Proposition 1.

(a) The thermodynamic limithm,,_, o, g, (h, B) of the free energy per spin exists and is finite.
The corresponding magnetization (per spingga (h)mg(|h|) wheremg(h) is the unique
solution of equation (10) with condition (12). Moreov@m,,_. . g.(k, B) = g(|hl, B),
whereg(h, B) is determined byn g (h), according to (11);

(b) mg(h) > Ofor h > O, andmg(h) can be extended, as solution of (10), (12) to the region
h+mg(h) >0, Wherem;s(h) > 0;

(c) the mapsh, B) — g(h, B) and(h, B) — mg(h) are real analytic on(0, co) x (0, 00);
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(d) the mapg — g(0, 8) and B — mg(0) are real analytic on(0, co) \ {B.}. In addition,
(d1) mg(0) =0for0 < B < B. = 1/(4F"(0)), whilemg(0) > Ofor 8 > B.;
(d2) my(0) = 2(1 — V1= B/B)B./B — 1for 0 < B < B. andmj (0) = 1, while
mjy(0) = mg(0)/F'(Bmy(0)) — Lfor B > B andm};(0) — 3, asB \ Be;

(e) for eachp > 0, the maph — mg(h) is strictly concave ori0, co).

This result can be completed with the following proposition, which states that the phase
transition is of infinite order.

Proposition 2. For 8 — 8. > 0, sufficiently small, there exists some const@nt 0 such that

m(0) < K exp[~Z/VF OB —F). (13)
The mapgs — g(0, ) and 8 — mg(0) are indefinitely differentiable a..

Proposition 1 can be easily related to the results of [1, 2].

Indeed, in the Ising case, wheitr) = (§(t — 1) +8(¢ + 1)) /2, we haveF (x) = Inchx,
and obtain the result of [1], nameB; = %.

Let us consider the extremely anisotrogigector model, consisting of a system of unitary
classical spins; € R?, associated with a one-dimensional lattice. The interactions of the spins
are given byy;1x;1/ max(, j), i, j > 1. Thea priori distributionp,(df1, dro, . . ., dt,) is the
uniform distribution on the unit sphere R?. Suppose the system in an external magnetic
field, directed along the first axis ®¢. This is equivalent to our model with thee priori
distribution

p(dt) = / pa(@iz, diz, ... dtg)

B r'(d/2)
Frad-1/2)

1—1)7 dt te[-1,1] d>2

We obtainF (x) = x2/2d + --- andB.(d) = d/4, d > 2, in agreement with the numerical
simulations, ford = 2, 3, on the extremely anisotropitvector model [2].
The next sections are devoted to the proofs of propositions 1 and 2.

2. The phase transition

The proof of proposition 1 is based on the study of equation (10) and the associated two-
dimensional, autonomous dynamical system. FirstAf@ufficiently large, one shows the
existence and uniqueness of a solutiep(k) to equation (10), verifying condition (12)
(lemma 1). Thenmg(h) is extended td: > 0 (lemma 2). The critical properties of the
magnetization stated in proposition 1, are obtained by using the linearized approximation of
the dynamical system around its fixed point.

The thermodynamic limit should follow estimating [eg&pg, (%, B)]/[expBng(|hl, B)],
whereg is as in proposition 1. Apparently, the only difficulty comes from the factglit , 3)
is not differentiable ak = 0. To avoid this technical point we actually estimate

exppng,(h, B)
whereg’(h, B) is a suitable sequence of differentiable functions approximatifg, ) for
largen. From (7), we find the corresponding recurrenceXpr By using the properties of
mg(h), one obtains suitable bounds forsuch thatin A, (#, B))/n — 0,as1 — oo, implying
the existence of the thermodynamic limit.
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We need the following properties &f.

(i) F'(x) >0 for x>0 and ImF(x)=M

(i) F/(x) >0  for x>0 and limF"(x)=0 (15)
(i) F"(x) <0 for x>0 and ImF"(x)=0

M being defined in the previous section.

In (i) and (ii), one recognizes the Griffiths inequalities, while (iii) is the strict
GHS inequality. The values of the limits are simple consequences of the formula
lim,_ o [ f(1)€" p(dt)/ [ € p(dt) = f(M) applied to real continuous functions.

We first investigate equation (10). This is defined for m # 0, sinceF’(x) = O if
x =0. ButF(x) = F(—x), x € R, so that it is sufficient to study the equation only on the
domainkz+m > 0. On this domain, the right-hand side of (10) verifies the Lipschitz condition,
with respect ton, implying the uniqueness of the solutions (with respect to the initial data).
In particular, through every poiting, ho) of the domainz + m > 0, there passes a unique
maximal solution.

Equation (10), with condition (12), is equivalent to the integral equation

;mm=M—/ e W m(s)H(m(s) + s)ds (16)
h
where
1 1
Hx) = - — x> 0.
F(Bx) M
By (15),
H(x)>0 H'(x) <0 lim Hx) = lim H'(x) =0. a7)

We have the following lemma.

Lemma 1. For 4 sufficiently large, equation (10), with condition (12), has a unique bounded
solution, which extends to a maximal solutiep(h) € [0, M].

Proof. SetM, = {m € C([a, >); R) : m(x) € [0, M]}. First we show that there existg
such that for each > hg, equation (16) has a unique solutioni,. We remark that by (17),
there ishg > 0 such that, for instance,

1
SUPH (s) < SUP(H (s) + M|H'(s)]) < 5—. (18)
s>=ho s>=ho 2M

Let T be the operator defined by the right-hand side of equation (16),
(Tm)(h) =M — / e_%m(s)H(m(s) +s5)ds.
h

Using (18) we find that itn € [0.M], s > a > ho, thenmH (m + s5) verifies the Lipschitz
condition, with respect te:, with Lipschitz bound< 1/(2M). It follows thatT M, ¢ M,
andT is a strict contraction otM,. Then by the Banach fixed point theorem, equation (16)
has a unique solution iMm,.

Now, using the properties df, it can be easily checked that farsufficiently large, a
functionm € M, verifies equation (10) with condition (12), if and onlywif satisfies (16).

To conclude the proof, it is sufficient to remark that each solutiaminof equation (10)
extends to a uniqgue maximal solution. O
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Forh > 0, fixed, letm be the solution of the equation
F'(B(m+h)) —m =0. (19)
The maph — m(h) is strictly increasing, withn (0) = 0, andm(h) — M, ash — oo.

Lemma 2. Letmg(h) be as inlemma 1. Theg(h) is defined for + mg(h) > 0 and has the
following properties:

(i) mg(h) € (m(h), M), h > Oandm%(h) > Oforall h > O
(i)if 0 < B < B = (AF"(0)* thenmy(h) < h, mg(0) = 0 and my(0) =
(1-2BF"(0) — V/1—-4BF"(0)/(2BF"(0));
(iii) if B > Bc, thenmg(0) > 0andm(0) = my(0)/F'(B(mp(0) — 1;
(iv) the map(h, B) — mg(h) is real-analytic on(0, co) x (0, 00).

This result follows from standard arguments on dynamical systems, so that we only sketch
the proof. Consider the two-dimensional, autonomous dynamical system

h= —F(B(m+h))

- (20)
m =F(B(m+h)) —m

associated to equation (10), defined for@llm) e R?. Taking into account the properties
of F (see (15)), for each poirthg, mg) € R?\(0, 0) there corresponds a trajectory of (20),
defined for allk € R. Obviously, there exists a unique fixed poiat m) = (0, 0). Moreover
it can be easily checked th&¥ (h, m) = %mz + F(B(m + h))/B is a (global) Lyapunov
function. Thus, standard arguments [5, 6] imply tilatm) = (0O, 0) is a stable node for
0 < B < B. =1/(4F"(0)) and a stable spiral point fg > 8..

By the above properties, lemma 1, and the phase portrait of (20), there exists a unique
trajectory(h(t), mg(t)) with A(—o0) = oo andmg(—oo) = M with

h= —F (B(mg(t)+h()) <0
g =F'(B(mg(t) +h(1))) —mp(t) <0

wheret. = suplt : F'(B(mg(t) + h(t))) = O}.
Note thatn g () results by eliminating betweem (¢) andmyg(¢), for ¢ > t.. By virtue of
these remarks, the first assertion and property (i) of lemma 2 follow from the phase portrait of
equation (20).
The inequalityng (h) < hin (i) is also obtained by investigating the phase portrait of (20).
The rest of the properties in (ii) and (iii) are immediate from the behaviour of the linearized
part of equation (20) aroun(@, 0), whichis anode fog € (0, 8.], and a spiral pointfog > B.
(the correct value oh;s(O) in (ii) is obtained by taking into account thag () < A for h > 0).
Finally, sinceF is analytic, one can apply a standard result to obtain (iv).

t >t (21)

Proof of proposition 1. The existence ofng, with properties (a)—(d) as in proposition 1,
results directly by applying lemmas 1 and 2, respectively.

By (10),
P a +m/ﬂ(h))3)/fs (h)
mjy(h) = — ey 00 (22)
where
) iy ()
yp(h) = BF"(B(mg(h) + h))) — (23)

(L +mly ()2’
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Suppose that property (e) is not true, i.e. there is séme- O such thatmy(h;) > 0.
According to proposition 1(b)mj () is finite and strictly positive or(0, co). But (15)
() and (12) imply thatm(h) — 0, ash — oo. Then, there existé, € (h1, o0) such
thatmg(hz) < 0. By continuity, one can find, € [h1, hy) such tha g(h*) = 0. Let
h = suplh € (hy, hp) : mlj(h) = 0}. We havel < hp andm;(h) < 0 on(h, hy). Onthe other
hand, we remark that; (1) < 0, since

mly(h) — 1

e Gy H 00+ B2+ m ) F (B ma () + 1))
B

yg(h) =
andF”" < 0 (property (iii)) in (15)). By continuity there is,,, € (i, h2) suchthay (h..) < 0.
Then, by virtue of (22), we gehg(h**) > 0, in contradiction with the properties bf so that
the argument of (e) is complete.
It remains to prove the existence of the thermodynamic limit. As in the beginning of this
section, we should defing’ conveniently and estimate the ratip introduced in (14).
Letmg andg*(h) = g(|h|, B) as in proposition 1 (for simplicity, we omit the dependence
of g in notation in the irrelevant cases). From the properties pfit results that ifs > 0,
then
0<gO<g <M g")>0  supg"(h) < oo (24)
h>0
verified byg*(h), too.
Since the functiong*(h) and F (x) are even, equation (9) can be replaced by

Bg*(h) = F(Bh + Bg™ (h)) heR (25)

which has been extended/io= 0, by settingg® (0) = £¢'(0)).
Defineg by

gn(h) = g*(h) +a,(h) = g"(h) + () "> exp(—+/ng (O)|h)). (26)
Obviously,g* is even, convex and has continuous second derivative. From (24}, @, then
0<g/(h)<g'(h) <M g2 ()| < Co-/n (27)

for some constanfy > 0.
By using (14), we find

L1(h) = exp[Bgi(h) — Bg*(h) — Bai(h)].
Applying the Lagrange theorem,

0> F(Bh) — F(Bh+Bg* (h)) = —Bg* (h)F'(Bh +0Bg™ (h)) > —pM>.
Further, by (24)

expl=A(M?+1)] < 2a(h) < L. (28)
Observe that (7) provides a recurrencepr

An(h) = 1) / @20, _1(h +1/n)p(dr) (29)

where

Sn1(h) = —Bg*(h) + Bl(n — Da,_1(h) — na,(h)]
and

Sn2(h, 1) = Bht + B(n — D[g,_1(h +1/n) — g,_1(h)].
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From the definition (26)a,_1(h) — a,(h)| < 3(n — 1)y/n, so that

1
|6n,1+ Bg ()] < Cq- T (30)

for some constanf’;.
On the other hand, expandigg)_, (2 +¢/n) int/n, up to the second-order terms, we get

t -1 12
iz = Bht = g 1 (1)t = —Bg ()~ + BT =g (h +01/m) —

with |0] < 1. Invoking (27) and the conditiom| < M, one finally finds

1
84,2 — Bht — Bgi_1(h)t| < Cz- ﬁ (31)

for some constant’;.
We evaluate (29) by means of (30) and (31). We obtain

6,M c O M C(B)
)\nfl <h + n ) eXp[_W} < )\n(h) eXp[—en(h)] < )\nfl <h + n ) exp[7i|

(32)

for some positive constadt(g) and|6,| < 1. Hereg,(h) = —Bg*(h) + F(Bh + g} 1(h))].
SinceA, (h) is even, it is sufficient to considér> 0. Sinceg* satisfies (25),

en(h) = —F(Bh + Bg* (h)) + F(Bh + Bg, 1 (1)) (33)

so that lim,_.« &, (h) = 0, because ligL, o g (h) = g (h).
Iterating (32) and using (28), we have
n 1 n n 1
exp[ —C(B)Y = —BM*+ 1)} < Au(h) eXp[ - Zen} < eXP<C<ﬂ> > —.>-
i=2 ‘/; i=2 i=2 \/l_
Then it is immediate thadin A,,(h))/n — 0 and, obviouslyg,(h) — g*(h) = g(|h]), as
n — oo, concluding the proof. O

3. The order of the phase transition

Proposition 2 follows from suitable estimations on the higher derivatiVes (0)/9* g of the
magnetization, using the equations in variations associated with (10).

We know thatmg(0) = 0 for 8 < B. andg — mg(0) is real analytic on(8,, co) (as a
simple consequence of the general theory of ordinary differential equations). It appears that
the only difficulty comes from the behaviour &t

Proof of proposition 2. We first prove (13). Sincmg(h) < 0 on (0, co) (proposition 1
(e)), we can chooser; as independent variable, instead/of In estimations, this appears
to be more convenient, in order to handle the singularities. 2k ét) denote the inverse of
(0,00) 2 h — mj(h) € (0, m}(0)). Setalsony(u) = (mg o hg)u).

LetT'g(u) = (yp o hg)(u) with yg as in (23). ClearlyI's(u) > 0O, by proposition 1 (e)
and (22). We can write

Tg(u) = Tgu) — BLF"(0) — F"(B(my(u) + hp(u))]
where
1

. 1 2
Lg(u) = (m - 5) +(B—B)F"(0) > T'g(u) u € (0,my(0)]
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with 8 — 8. > 0.
By (22),
d ES
1 mﬁ(”) _ u (34)
my(u)  du (1 +u)Tp(u)

and a straightforward computation implies

n (22 _ 2 [ ! arctan 1-u Tl
myuz) | 2 LJF(O) B - Bo) 2(1+1)FO) B — Bo) L.,

1 Tyua) [ ubp)

2 In Tp(uz) +/u (1+u) du (33)

< m;S(O). Here,

1

for0 < Uy < Uy
1 1
= >
T Tpw)

for 8 = B.,u € (0, m}}(O)].

In (35), letu, = m},(O) andu; < 1 (obviously, mg(0) = mjg(m;g(O))). From
proposition 1d), there is somefy > B. such thatu, = my(0) > 1, provided that
Bo = B = B.. Now, inequality (13) follows easily by estimating the right-hand side of
(35), where only the first term is relevant, since the second term is bounded and the last one is
positive, by (36).

In order to complete the proof of proposition 2, it would be sufficient to show that
3*z5(0)/9*B — 0 asB \| B., wherezg(h) = Bg(h, B), with g as in proposition 1.

The starting point is the family of equations associated to (9% far0, namely

(36)

d ofzg(h) _ 1 d*zg(h) B
anapt  FBmpm+pry ape e k=hze 37)
where
Zgi(h) = —h
and

F' (2 + Bh) 0k~1z4(h) dz5(h) . @
S FR(Z+ph) 9pt 9B * g Lpam) k=2 (38)

We integrate (37) on some interval, [zo] and find

Zgi(h) =

d*zg(h) 3 z5(ho) ho
= Eg(h, hg) — Eg(h,h)Zg (W) dh' h>0 39
opF op" s(h, ho) //; g(h, ") Zg i (h) (39)
with
/‘lz 1
Eg(hy, hy) = ex (—/ —dh). 40
PR = OO T ) FBmath) + Bh) (40)
We obtain a convenientinequality for the right-hand side of (39), implying the desired behaviour
of 8¥z4(0)/9*B.
To this end, we first show that i and 8o — 8. > 0 are sufficiently small, then
Eg(ha, ha) < C - (mp(h1)/mp(h2))? (41)

for0 < hy < hp < hgand B € (B., Bo] (in the rest of the pape€; denotes various constants
with respect tar € [0, ho] and 8 € (8., Bo])-
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Indeed, in the identity

1 u dinTg(u)  (1—u)Ap(u)
=2 _ +
(L +u)?Tp(u) (1 +u)3Tp(u) du 1 +u)d
we use formula (34) and take into account that
1 1
W) = ——"——
F'(Bmy(u) + Bhp(u)) p) (1 +u)?Tp(u)
obtaining
ho I / m'y (h1) _
f A AT A A2 —f A WAW g,
n F'(Bmg(h) + Bh) mpg(h1) T (mig(h1)) mly(h) (1+u)?

(42)
Suppose thatg and o — B. > 0 are sufficiently small. Then the last two terms in the right-

hand side of (42) are bounded, provided that @; < h, < ko andg € (8., Bo] (to estimate
the third term one uses the continuitylof and the property lirg g, I's(0) > 0). We get

h2
/ S S A PTG P (43)
n F'(Bmg(h) + Bh) mg(h1)
implying (41).
Consider (39) fok = 1. We introduce (41) in (39) and find
dzp(h) . 21 /ho n />
ap | < C-ms (1 R dh (44)

for i € [0, ho] B € (Be, Bol-

We have in mind a bound for the integral in (44). Singg0) — 0 asp \ B., we should
investigate the behaviour @f/mg(h')? for " andp — B. small. However, it is sufficient to
observe thatg(h) > hm;g(ho) andmg(h) > F'(Bmg(h) + h). Then, clearly,

ho  pr ho 1
[y S E——
n o mp(h’) n F'(Bmg(h') + Bh)
Moreover, by virtue of (43) and (13), iy and By — B. > 0 are sufficiently small, then

ho 1 ho 1
dn’ < —— __dh<C-|l 0 45
/h F’(,Bmﬁ(h/)+,3h’) /;) F’(,Bm,g(h)+,3h) | n(mﬂ( )| (45)
for h € [0, ho], B € (B, Bo]- Consequently, foh € [0, hq], B € (B, Bol,
azg;h)' <C- I|n(mﬁ(0)IM5(h)2 (46)

verifying 9z5(0)/98 — 0 asp \( B..

Consider (39) fork > 2. We proceed by induction: first we find that/if € [0, &)
and B € (B, o], then|Zg i (h)| is bounded by some polynomial expression (with constant
coefficients) depending only o/ F’| and[d/z5/3p7| j = 1,...,k — 1; further we apply
(41) and (45) in a similar way as fér= 1. We finally obtain that ifip and 8o — 8. > 0 are
sufficiently small, then there is some integgrand a constant, such that

d*z5(h)
9Bk
forall h € [0, ho]l and B € (B, Bol-
The last inequality implies that*z;(0)/9p* — 0, asB \ B., so that the proof of
proposition 2 is complete. a

< Ci -1 In(mp(0)"m5 (h) (47)
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