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Abstract. We prove the existence of an infinite-order phase transition for a semi-infinite, one-
dimensional, non-homogeneous system of classical continuous spins, with long-range interactions
and generala priori distribution.

1. Introduction

In a recent paper [1], a phase transition of infinite order in temperature has been proved for
a non-homogeneous, one-dimensional Ising model, with long-range interactions. Numerical
simulations and analytical considerations [2, 3] suggest that the results of [1] might be valid
for more general models.

In this paper we extend the results of [1] to a one-dimensional system of (classical)
continuous spins, with generala priori distribution of the spins.

More precisely, we consider a system of spinsxi ∈ R, i = 1, 2, . . . , n, in the presence of
a constant, external magnetic fieldh ∈ R described by the Hamiltonian

Hn,h(x1, x2, . . . , xn) = −
n∑
j=2

1

j

j−1∑
i=1

xixj −
n∑
i=1

hxi H1,h = −hx1. (1)

Obviously, the sequence{Hn}n=1,2,... verifies the recurrence relation

Hn,h(x1, . . . , xn) = Hn−1,h+xn/n(x1, . . . , xn−1)− hxn n > 2. (2)

We assume that thea priori probability distributionρ of the spins, in the absence of the
interactions, has compact support and is an even ‘GHS measure’ (see e.g. [4]), i.e. its generating
function

F(x) = ln

(∫
extρ(dt)

)
(3)

has a strictly concave derivative on [0,∞).
The partition function of the model, for the inverse temperatureβ > 0, is

Zn(h, β) =
∫
Rn

exp[−βHn,h(x1, . . . , xn)]
n∏
i=1

ρ(dxi). (4)
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Denoting

gn(h, β) = 1

nβ
lnZn(h, β) (5)

the free energy per spin is−gn(h, β), while the magnetization per spin isg′n(h, β).
In this paper we prove the existence of the thermodynamic limit—limn→∞ gn(h, β)—

and show that the corresponding thermodynamic magnetization per spin is the solution of a
certain differential equation. Moreover, the system exhibits a phase transition inβ (there exists
spontaneous magnetization).

The differential equation satisfied by the magnetization can be guessed, starting from the
recurrence of the partition functions resulting from (2),

Zn(h, β) =
∫
R

eβhtZn−1(h + t/n, β)ρ(dt) n > 2 (6)

or

exp(βgn(h)) =
∫

exp[βht + (n− 1)β(gn−1(h + t/n)− gn(h))]ρ(dt) (7)

(for the sake of simplicity we have omitted the dependence onβ in the notation ofgn).
Indeed, assuming thatgn → g and (n − 1)(gn − gn−1) → 0, with the sequence of

derivatives verifyingg′n → g′, asn→∞, then the thermodynamic limitg should satisfy the
equation

exp(βg(h)) =
∫

exp[βht + βg′(h)t ]ρ(dt) (8)

or

βg(h) = F [βh + βg′(h)] (9)

whereF is given by (3).
In terms of the magnetization per spinm = g′, equation (9) becomes

m′(h) = m(h)

F ′(βm(h) + βh)
− 1. (10)

Obviously the solutions of (9) and (10) are related by the following formula

g(h, β) = β−1F(βm(0)) +
∫ h

0
m(t) dt. (11)

Further, from simple physical considerations, equation (10) should be supplemented with
the following condition

lim
h→∞

m(h) = M > 0 (12)

where [−M,M] is the smallest interval containing the compact support ofρ.
We can state our main results as follows.

Proposition 1.

(a) The thermodynamic limit—limn→∞ gn(h, β) of the free energy per spin exists and is finite.
The corresponding magnetization (per spin) issgn(h)mβ(|h|) wheremβ(h) is the unique
solution of equation (10) with condition (12). Moreover,limn→∞ gn(h, β) = g(|h|, β),
whereg(h, β) is determined bymβ(h), according to (11);

(b) mβ(h) > 0 for h > 0, andmβ(h) can be extended, as solution of (10), (12) to the region
h +mβ(h) > 0, wherem′β(h) > 0;

(c) the maps(h, β)→ g(h, β) and(h, β)→ mβ(h) are real analytic on(0,∞)× (0,∞);
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(d) the mapsβ → g(0, β) andβ → mβ(0) are real analytic on(0,∞) \ {βc}. In addition,
(d1) mβ(0) = 0 for 06 β 6 βc = 1/(4F ′′(0)), whilemβ(0) > 0 for β > βc;
(d2) m

′
β(0) = 2(1 − √1− β/βc)βc/β − 1 for 0 6 β 6 βc andm′βc (0) = 1, while

m′β(0) = mβ(0)/F ′(βmβ(0))− 1 for β > βc andm′β(0)→ 3, asβ ↘ βc;
(e) for eachβ > 0, the maph→ mβ(h) is strictly concave on(0,∞).

This result can be completed with the following proposition, which states that the phase
transition is of infinite order.

Proposition 2. For β −βc > 0, sufficiently small, there exists some constantK > 0 such that

mβ(0) 6 K exp
[
−π

2
/
√
F ′′(0)(β − βc)

]
. (13)

The mapsβ → g(0, β) andβ → mβ(0) are indefinitely differentiable atβc.

Proposition 1 can be easily related to the results of [1,2].
Indeed, in the Ising case, whenρ(t) = (δ(t − 1) + δ(t + 1))/2, we haveF(x) = ln chx,

and obtain the result of [1], namelyβc = 1
4.

Let us consider the extremely anisotropicd-vector model, consisting of a system of unitary
classical spinsxi ∈ Rd , associated with a one-dimensional lattice. The interactions of the spins
are given byxi1xj1/max(i, j), i, j > 1. Thea priori distributionρd(dt1, dt2, . . . ,dtd) is the
uniform distribution on the unit sphere inRd . Suppose the system in an external magnetic
field, directed along the first axis ofRd . This is equivalent to our model with thea priori
distribution

ρ(dt) =
∫
ρd(dt1, dt2, . . .dtd)

= 0(d/2)

0( 1
2)0((d − 1)/2)

(1− t2) d−3
2 dt t ∈ [−1, 1] d > 2.

We obtainF(x) = x2/2d + · · · andβc(d) = d/4, d > 2, in agreement with the numerical
simulations, ford = 2, 3, on the extremely anisotropicd-vector model [2].

The next sections are devoted to the proofs of propositions 1 and 2.

2. The phase transition

The proof of proposition 1 is based on the study of equation (10) and the associated two-
dimensional, autonomous dynamical system. First, forh sufficiently large, one shows the
existence and uniqueness of a solutionmβ(h) to equation (10), verifying condition (12)
(lemma 1). Thenmβ(h) is extended toh > 0 (lemma 2). The critical properties of the
magnetization stated in proposition 1, are obtained by using the linearized approximation of
the dynamical system around its fixed point.

The thermodynamic limit should follow estimating [expβngn(h, β)]/[expβng(|h|, β)],
whereg is as in proposition 1. Apparently, the only difficulty comes from the fact thatg(|h|, β)
is not differentiable ath = 0. To avoid this technical point we actually estimate

λn(h, β) = expβngn(h, β)

expβng∗n(h, β)
h ∈ R. (14)

whereg∗n(h, β) is a suitable sequence of differentiable functions approximatingg(|h|, β) for
largen. From (7), we find the corresponding recurrence forλn. By using the properties of
mβ(h), one obtains suitable bounds forλn such that(ln λn(h, β))/n→ 0, asn→∞, implying
the existence of the thermodynamic limit.
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We need the following properties ofF .

(i) F ′(x) > 0 for x > 0 and lim
x→∞F

′(x) = M
(ii ) F ′′(x) > 0 for x > 0 and lim

x→∞F
′′(x) = 0

(iii ) F ′′′(x) < 0 for x > 0 and lim
x→∞F

′′′(x) = 0

(15)

M being defined in the previous section.
In (i) and (ii), one recognizes the Griffiths inequalities, while (iii) is the strict

GHS inequality. The values of the limits are simple consequences of the formula
limx→∞

∫
f (t)extρ(dt)/

∫
extρ(dt) = f (M) applied to real continuous functions.

We first investigate equation (10). This is defined forh + m 6= 0, sinceF ′(x) = 0 if
x = 0. ButF(x) = F(−x), x ∈ R, so that it is sufficient to study the equation only on the
domainh+m > 0. On this domain, the right-hand side of (10) verifies the Lipschitz condition,
with respect tom, implying the uniqueness of the solutions (with respect to the initial data).
In particular, through every point(m0, h0) of the domainh + m > 0, there passes a unique
maximal solution.

Equation (10), with condition (12), is equivalent to the integral equation

m(h) = M −
∫ ∞
h

e−
s−h
M m(s)H(m(s) + s)ds (16)

where

H(x) = 1

F ′(βx)
− 1

M
x > 0.

By (15),

H(x) > 0 H ′(x) < 0 lim
x→∞H(x) = lim

x→∞H
′(x) = 0. (17)

We have the following lemma.

Lemma 1. For h sufficiently large, equation (10), with condition (12), has a unique bounded
solution, which extends to a maximal solutionmβ(h) ∈ [0,M].

Proof. SetMa = {m ∈ C([a,∞);R) : m(x) ∈ [0,M]}. First we show that there existsh0

such that for eacha > h0, equation (16) has a unique solution inMa. We remark that by (17),
there ish0 > 0 such that, for instance,

sup
s>h0

H(s) 6 sup
s>h0

(H(s) +M|H ′(s)|) 6 1

2M
. (18)

Let T be the operator defined by the right-hand side of equation (16),

(T m)(h) = M −
∫ ∞
h

e−
s−h
M m(s)H(m(s) + s)ds.

Using (18) we find that ifm ∈ [0.M], s > a > h0, thenmH(m + s) verifies the Lipschitz
condition, with respect tom, with Lipschitz bound6 1/(2M). It follows thatTMa ⊂ Ma

andT is a strict contraction onMa. Then by the Banach fixed point theorem, equation (16)
has a unique solution inMa.

Now, using the properties ofH , it can be easily checked that fora sufficiently large, a
functionm ∈Ma verifies equation (10) with condition (12), if and only ifm satisfies (16).

To conclude the proof, it is sufficient to remark that each solution inMa of equation (10)
extends to a unique maximal solution. �
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Forh > 0, fixed, letm be the solution of the equation

F ′(β(m + h))−m = 0. (19)

The maph→ m(h) is strictly increasing, withm(0) = 0, andm(h)→ M, ash→∞.

Lemma 2. Letmβ(h) be as in lemma 1. Themβ(h) is defined forh +mβ(h) > 0 and has the
following properties:

(i) mβ(h) ∈ (m(h),M), h > 0 andm′β(h) > 0 for all h > 0;

(ii) if 0 < β 6 βc = (4F ′′(0))−1 then mβ(h) < h, mβ(0) = 0 and m′β(0) =
(1− 2βF ′′(0)−√1− 4βF ′′(0))/(2βF ′′(0));

(iii) if β > βc, thenmβ(0) > 0 andm′β(0) = mβ(0)/F ′(β(mβ(0))− 1;
(iv) the map(h, β)→ mβ(h) is real-analytic on(0,∞)× (0,∞).

This result follows from standard arguments on dynamical systems, so that we only sketch
the proof. Consider the two-dimensional, autonomous dynamical system

ḣ = − F ′(β(m + h))

ṁ =F ′(β(m + h))−m (20)

associated to equation (10), defined for all(h,m) ∈ R2. Taking into account the properties
of F (see (15)), for each point(h0, m0) ∈ R2\(0, 0) there corresponds a trajectory of (20),
defined for allt ∈ R. Obviously, there exists a unique fixed point(h,m) = (0, 0). Moreover
it can be easily checked thatW(h,m) = 1

2m
2 + F(β(m + h))/β is a (global) Lyapunov

function. Thus, standard arguments [5, 6] imply that(h,m) = (0, 0) is a stable node for
0< β 6 βc = 1/(4F ′′(0)) and a stable spiral point forβ > βc.

By the above properties, lemma 1, and the phase portrait of (20), there exists a unique
trajectory(h(t),mβ(t)) with h(−∞) = ∞ andmβ(−∞) = M with

ḣ = − F ′(β(mβ(t) + h(t))) < 0

ṁβ =F ′(β(mβ(t) + h(t)))−mβ(t) < 0

}
t > tc (21)

wheretc = sup{t : F ′(β(mβ(t) + h(t))) = 0}.
Note thatmβ(h) results by eliminatingt betweenh(t) andmβ(t), for t > tc. By virtue of

these remarks, the first assertion and property (i) of lemma 2 follow from the phase portrait of
equation (20).

The inequalitymβ(h) < h in (ii) is also obtained by investigating the phase portrait of (20).
The rest of the properties in (ii) and (iii) are immediate from the behaviour of the linearized

part of equation (20) around(0, 0), which is a node forβ ∈ (0, βc], and a spiral point forβ > βc
(the correct value ofm′β(0) in (ii) is obtained by taking into account thatmβ(h) < h for h > 0).

Finally, sinceF is analytic, one can apply a standard result to obtain (iv).

Proof of proposition 1. The existence ofmβ , with properties (a)–(d) as in proposition 1,
results directly by applying lemmas 1 and 2, respectively.

By (10),

m′′β(h) = −
(1 +m′β(h))

3γβ(h)

mβ(h)
(22)

where

γβ(h) = βF ′′(β(mβ(h) + h)))− m′β(h)

(1 +m′β(h))2
. (23)
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Suppose that property (e) is not true, i.e. there is someh1 > 0 such thatm′′β(h1) > 0.
According to proposition 1(b),m′β(h) is finite and strictly positive on(0,∞). But (15)
(i) and (12) imply thatm′β(h) → 0, ash → ∞. Then, there existsh2 ∈ (h1,∞) such
thatm′′β(h2) < 0. By continuity, one can findh∗ ∈ [h1, h2) such thatm′′β(h∗) = 0. Let

h̃ = sup{h ∈ (h1, h2) : m′′β(h) = 0}. We haveh̃ < h2 andm′′β(h) < 0 on(h̃, h2). On the other

hand, we remark thatγ ′β(h̃) < 0, since

γ ′β(h) =
m′β(h)− 1

(1 +m′β(h))3
m′′β(h) + β2(1 +m′β(h))F

′′′(β(mβ(h) + h))

andF ′′′ < 0 (property (iii)) in (15)). By continuity there ish∗∗ ∈ (h̃, h2) such thatγ ′β(h∗∗) < 0.

Then, by virtue of (22), we getm′′β(h∗∗) > 0, in contradiction with the properties ofh̃, so that
the argument of (e) is complete.

It remains to prove the existence of the thermodynamic limit. As in the beginning of this
section, we should defineg∗n conveniently and estimate the ratioλn introduced in (14).

Letmβ andg∗(h) = g(|h|, β) as in proposition 1 (for simplicity, we omit the dependence
of β in notation in the irrelevant cases). From the properties ofmβ , it results that ifh > 0,
then

06 g′(0) 6 g′(h) 6 M g′′(h) > 0 sup
h>0

g′′(h) <∞ (24)

verified byg∗(h), too.
Since the functionsg∗(h) andF(x) are even, equation (9) can be replaced by

βg∗(h) = F(βh + βg∗′(h)) h ∈ R (25)

which has been extended toh = 0, by settingg∗′(0) = ±g′(0)).
Defineg∗n by

g∗n(h) = g∗(h) + an(h) = g∗(h) + (n)−1/2 exp(−√ng′(0)|h|). (26)

Obviously,g∗n is even, convex and has continuous second derivative. From (24), ifh > 0, then

06 g∗′n (h) 6 g∗′(h) 6 M |g∗′′n (h)| 6 C0 ·
√
n (27)

for some constantC0 > 0.
By using (14), we find

λ1(h) = exp[βg1(h)− βg∗(h)− βa1(h)].

Applying the Lagrange theorem,

0> F(βh)− F(βh + βg∗′(h)) = −βg∗′(h)F ′(βh + θβg∗′(h)) > −βM2.

Further, by (24)

exp[−β(M2 + 1)] 6 λ1(h) 6 1. (28)

Observe that (7) provides a recurrence forλn

λn(h) = eδn,1(h)
∫

eδn,2(h,t)λn−1(h + t/n)ρ(dt) (29)

where

δn,1(h) = −βg∗(h) + β[(n− 1)an−1(h)− nan(h)]
and

δn,2(h, t) = βht + β(n− 1)[g∗n−1(h + t/n)− g∗n−1(h)].
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From the definition (26),|an−1(h)− an(h)| 6 1
2(n− 1)

√
n , so that

|δn,1 + βg∗(h)| 6 C1 · 1√
n

(30)

for some constantC1.
On the other hand, expandingg∗n−1(h + t/n) in t/n, up to the second-order terms, we get

δn,2 − βht − βg∗n−1(h)t = −βg∗′n−1(h)
t

n
+ β

n− 1

2
g∗′′n−1(h + θt/n)

t2

n2

with |θ | 6 1. Invoking (27) and the condition|t | 6 M, one finally finds∣∣δn,2 − βht − βg∗n−1(h)t
∣∣ 6 C2 · 1√

n
(31)

for some constantC1.
We evaluate (29) by means of (30) and (31). We obtain

λn−1

(
h +

θnM

n

)
exp

[
−C(β)√

n

]
6 λn(h) exp[−εn(h)] 6 λn−1

(
h +

θnM

n

)
exp

[
C(β)√
n

]
(32)

for some positive constantC(β) and|θn| 6 1. Here,εn(h) = −βg∗(h) +F(βh + βg∗′n−1(h))].
Sinceλn(h) is even, it is sufficient to considerh > 0. Sinceg∗ satisfies (25),

εn(h) = −F(βh + βg∗′(h)) + F(βh + βg∗′n−1(h)) (33)

so that limn→∞ εn(h) = 0, because limn→∞ g∗′n (h) = g∗′(h).
Iterating (32) and using (28), we have

exp

[
− C(β)

n∑
i=2

1√
i
− β(M2 + 1)

]
6 λn(h) exp

[
−

n∑
i=2

εn

]
6 exp

(
C(β)

n∑
i=2

1√
i

)
.

Then it is immediate that(ln λn(h))/n → 0 and, obviously,gn(h) → g∗(h) = g(|h|), as
n→∞, concluding the proof. �

3. The order of the phase transition

Proposition 2 follows from suitable estimations on the higher derivatives∂kmβ(0)/∂kβ of the
magnetization, using the equations in variations associated with (10).

We know thatmβ(0) ≡ 0 for β 6 βc andβ → mβ(0) is real analytic on(βc,∞) (as a
simple consequence of the general theory of ordinary differential equations). It appears that
the only difficulty comes from the behaviour atβc.

Proof of proposition 2. We first prove (13). Sincem′′β(h) < 0 on (0,∞) (proposition 1
(e)), we can choosem′β as independent variable, instead ofh. In estimations, this appears
to be more convenient, in order to handle the singularities. Lethβ(u) denote the inverse of
(0,∞) 3 h→ m′β(h) ∈ (0, m′β(0)). Set alsom∗β(u) = (mβ ◦ hβ)(u).

Let 0β(u) = (γβ ◦ hβ)(u) with γβ as in (23). Clearly,0β(u) > 0, by proposition 1 (e)
and (22). We can write

0β(u) = 0̃β(u)− β[F ′′(0)− F ′′(β(m∗β(u) + hβ(u))]

where

0̃β(u) =
(

1

1 +u
− 1

2

)2

+ (β − βc)F ′′(0) > 0β(u) u ∈ (0, m′β(0)]
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with β − βc > 0.
By (22),

1

m∗β(u)

dm∗β(u)

du
= − u

(1 +u)30β(u)
(34)

and a straightforward computation implies

ln

(
m∗β(u1)

m∗β(u2)

)
= 1

2

[
1√

F ′′(0)(β − βc)
arctan

1− u
2(1 +u)

√
F ′′(0)(β − βc)

]u1

u2

+
1

2
ln
0̃β(u2)

0̃β(u1)
+
∫ u2

u1

u1β(u)

(1 +u)3
du (35)

for 0< u1 < u2 6 m′β(0). Here,

1β(u) = 1

0β(u)
− 1

0̃β(u)
> 0 (36)

for β > βc, u ∈ (0, m′β(0)].
In (35), let u2 = m′β(0) and u1 < 1 (obviously,mβ(0) = m∗β(m

′
β(0))). From

proposition 1(d2), there is someβ0 > βc such thatu2 = m′β(0) > 1, provided that
β0 > β > βc. Now, inequality (13) follows easily by estimating the right-hand side of
(35), where only the first term is relevant, since the second term is bounded and the last one is
positive, by (36).

In order to complete the proof of proposition 2, it would be sufficient to show that
∂kzβ(0)/∂kβ → 0 asβ ↘ βc, wherezβ(h) = βg(h, β), with g as in proposition 1.

The starting point is the family of equations associated to (9) forh > 0, namely

d

dh

∂kzβ(h)

∂βk
= 1

F ′(βmβ(h) + βh)

∂kzβ(h)

∂βk
+Zβ,k(h) k = 1, 2, . . . , (37)

where

Zβ,1(h) = −h
and

Zβ,k(h) = −
F
′′
(z′β + βh)

F
′3(z′β + βh)

∂k−1zβ(h)

∂βk−1

∂zβ(h)

∂β
+
∂

∂β
Zβ,k−1(h) k > 2. (38)

We integrate (37) on some interval [h, h0] and find

∂kzβ(h)

∂βk
= ∂kzβ(h0)

∂βk
Eβ(h, h0)−

∫ h0

h

Eβ(h, h
′)Zβ,k(h′) dh′ h > 0 (39)

with

Eβ(h1, h2) = exp

(
−
∫ h2

h1

1

F ′(βmβ(h) + βh)
dh

)
. (40)

We obtain a convenient inequality for the right-hand side of (39), implying the desired behaviour
of ∂kzβ(0)/∂kβ.

To this end, we first show that ifh0 and β0 − βc > 0 are sufficiently small, then

Eβ(h1, h2) 6 C · (mβ(h1)/mβ(h2))
2 (41)

for 0 6 h1 6 h2 6 h0 and β ∈ (βc, β0] (in the rest of the paper,C denotes various constants
with respect toh ∈ [0, h0] andβ ∈ (βc, β0]).
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Indeed, in the identity

1

(1 +u)20β(u)
= 2

u

(1 +u)30β(u)
− d ln 0̃β(u)

du
+
(1− u)1β(u)

(1 +u)3

we use formula (34) and take into account that
1

F ′(βm∗β(u) + βhβ(u))
h′β(u) = −

1

(1 +u)20β(u)

obtaining∫ h2

h1

1

F ′(βmβ(h) + βh)
dh = 2 ln

mβ(h2)

mβ(h1)
+ ln

0̃β(m
′
β(h2))

0̃β(m
′
β(h1))

−
∫ m′β (h1)

m′β (h2)

(1− u)1β(u)

(1 +u)3
du.

(42)

Suppose thath0 and β0 − βc > 0 are sufficiently small. Then the last two terms in the right-
hand side of (42) are bounded, provided that 06 h1 6 h2 6 h0 andβ ∈ (βc, β0] (to estimate
the third term one uses the continuity of0β and the property limβ↘βc 0β(0) > 0). We get∣∣∣∣∫ h2

h1

1

F ′(βmβ(h) + βh)
dh− 2 ln

mβ(h2)

mβ(h1)

∣∣∣∣ 6 C (43)

implying (41).
Consider (39) fork = 1. We introduce (41) in (39) and find∣∣∣∣∂zβ(h)∂β

∣∣∣∣ 6 C ·mβ(h)2(1−
∫ h0

h

h′

mβ(h′)2
dh′
)

(44)

for h ∈ [0, h0] β ∈ (βc, β0].
We have in mind a bound for the integral in (44). Sincemβ(0)→ 0 asβ ↘ βc, we should

investigate the behaviour ofh′/mβ(h′)2 for h′ andβ − βc small. However, it is sufficient to
observe thatmβ(h) > hm′β(h0) andmβ(h) > F ′(βmβ(h) + h). Then, clearly,∫ h0

h

h′

mβ(h′)2
dh′ 6 C

∫ h0

h

1

F ′(βmβ(h′) + βh)
dh′.

Moreover, by virtue of (43) and (13), ifh0 and β0 − βc > 0 are sufficiently small, then∫ h0

h

1

F ′(βmβ(h′) + βh′)
dh′ 6

∫ h0

0

1

F ′(βmβ(h) + βh)
dh 6 C · | ln(mβ(0))| (45)

for h ∈ [0, h0], β ∈ (βc, β0]. Consequently, forh ∈ [0, h0], β ∈ (βc, β0],∣∣∣∣∂zβ(h)∂β

∣∣∣∣ 6 C · | ln(mβ(0)|mβ(h)2 (46)

verifying ∂zβ(0)/∂β → 0 asβ ↘ βc.
Consider (39) fork > 2. We proceed by induction: first we find that ifh ∈ [0, h0]

and β ∈ (βc, β0], then |Zβ,k(h)| is bounded by some polynomial expression (with constant
coefficients) depending only on|1/F ′| and |∂j zβ/∂βj | j = 1, . . . , k − 1; further we apply
(41) and (45) in a similar way as fork = 1. We finally obtain that ifh0 and β0 − βc > 0 are
sufficiently small, then there is some integernk and a constantCk such that

∂kzβ(h)

∂βk
6 Ck · | ln(mβ(0)|nkm2

β(h) (47)

for all h ∈ [0, h0] andβ ∈ (βc, β0].
The last inequality implies that∂kzβ(0)/∂βk → 0, asβ ↘ βc, so that the proof of

proposition 2 is complete. �
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